LMDAPNet: A Novel Manifold-Based Deep Learning Network
نویسندگان
چکیده
منابع مشابه
Deep manifold-to-manifold transforming network for action recognition
In this paper, a novel deep manifold-to-manifold transforming network (DMT-Net) is proposed for action recognition, in which symmetric positive definite (SPD) matrix is adopted to describe the spatial-temporal information of action feature vectors. Since each SPD matrix is a point of the Riemannian manifold space, the proposed DMT-Net aims to learn more discriminative feature by hierarchically ...
متن کاملDeep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملDeep Residual Learning and PDEs on Manifold
In this paper, we formulate the deep residual network (ResNet) as a control problem of transport equation. In ResNet, the transport equation is solved along the characteristics. Based on this observation, deep neural network is closely related to the control problem of PDEs on manifold. We propose several models based on transport equation, Hamilton-Jacobi equation and Fokker-Planck equation. T...
متن کاملDeep nets for local manifold learning
The problem of extending a function f defined on a training data C on an unknown manifold X to the entire manifold and a tubular neighborhood of this manifold is considered in this paper. For X embedded in a high dimensional ambient Euclidean space R, a deep learning algorithm is developed for finding a local coordinate system for the manifold without eigen–decomposition, which reduces the prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2985128